Zahlen abrunden - définition. Qu'est-ce que Zahlen abrunden
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Zahlen abrunden - définition

NUMBER THAT CAN BE WRITTEN WITHOUT A FRACTIONAL OR DECIMAL COMPONENT
IntegerNumbers; Integers; Integer number; Signed Numbers; Rational integer; ℤ; Interger; Integer value; Negative integer; Set of integers; Zahlen; Integar; Intergar; Construction of the integers; Integer-valued; Z (set); Integer numbers; Ring of rational integers; Intger
  • ℤ}}]])
  • negative]] integers are shown in blue and negative integers in red.
  • upright=1.5

Cantor's first set theory article         
  • Abraham Fraenkel, between 1939 and 1949
  • Algebraic numbers on the [[complex plane]] colored by polynomial degree. (red = 1, green = 2, blue = 3, yellow = 4). Points become smaller as the integer polynomial coefficients become larger.
  • Case 1: Last interval (''a''<sub>''L''</sub>, ''b''<sub>''L''</sub>)
  • Case 2: ''a''<sub>∞</sub> = ''b''<sub>∞</sub>
  • Case 3: ''a''<sub>∞</sub> < ''b''<sub>∞</sub>
  • hair}}c. 1870
  • Karl Weierstrass
  • Leopold Kronecker, 1865
  • hair}}c. 1948
FIRST ARTICLE ON TRANSFINITE SET THEORY
Cantor first uncountability proof; User:RJGray/Cantor draft3; On a Property of the Collection of All Real Algebraic Numbers; Georg Cantor's first set theory paper; Georg Cantor's first paper on set theory; Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen; Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen; Cantor's 1874 uncountability proof; Georg Cantor's first set theory article; Cantor's first uncountability proof
Cantor's first set theory article contains Georg Cantor's first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is his "revolutionary discovery" that the set of all real numbers is uncountably, rather than countably, infinite..
Integer         
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.
Integer         
·noun A complete entity; a whole number, in contradistinction to a fraction or a mixed number.

Wikipédia

Integer

An integer is the number zero (0), a positive natural number (1, 2, 3, etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface Z or blackboard bold Z {\displaystyle \mathbb {Z} } .

The set of natural numbers N {\displaystyle \mathbb {N} } is a subset of Z {\displaystyle \mathbb {Z} } , which in turn is a subset of the set of all rational numbers Q {\displaystyle \mathbb {Q} } , itself a subset of the real numbers R {\displaystyle \mathbb {R} } . Like the natural numbers, Z {\displaystyle \mathbb {Z} } is countably infinite. An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, 5+1/2, and 2 are not.

The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic integers. In fact, (rational) integers are algebraic integers that are also rational numbers.